1. Introduction to Flow Control with Loops

Flow control in C++ determines the order in which program statements are executed. Normally,
statements execute sequentially from top to bottom. However, many programming problems require
certain instructions to be executed repeatedly until a condition is met.

Loops are flow control structures that allow a block of code to run multiple times based on a condition.

They reduce code repetition, improve efficiency, and make programs easier to understand and maintain.
In C++, loops play a vital role in data processing, calculations, and automation of repetitive tasks.

2. Need for Loops in Programming

Without loops, programmers would need to write the same statement multiple times, which leads to:
e Large and confusing code
e Increased chances of errors
 Difficult maintenance
Loops help in:
o Repeating instructions automatically
e Reducing code size
o Handling large data sets

e Improving program logic

For example, printing numbers from 1 to 100 manually is impractical, but loops make it easy.

3. Types of Looping Statements in C++

C++ provides three main types of loops:
1. forloop
2. while loop
3. do-while loop

Each loop has its own structure and is used based on the nature of the problem.

4. The for Loop

The for loop is used when the number of iterations is known in advance.

Syntax
for (initialization; condition; increment/decrement)

{

statements;

}



Explanation

 Initialization: Executes once at the beginning
o Condition: Checked before every iteration
e Increment/Decrement: Updates loop variable

Example
for (int i = 1; 1 <= 5; 1i++)

{

cout << 1 << endl;

}

5. Working of the for Loop

The execution of a for loop follows these steps:

Initialization

Condition checking

Execution of loop body

Increment or decrement

Repeat until condition becomes false

Nk W=

Advantages

e Compact structure
o Easyto read
o Suitable for counting loops

6. The while Loop

The while loop is used when the number of iterations is not known in advance.

Syntax

while (condition)

{

statements;

Example

int 1 H
while 1 <= 5)
{

cout << 1 << endl;
i++;

Features

o Condition is checked before execution
o Loop may execute zero times



7. Working of the while Loop

Steps involved:

1. Condition is evaluated

2. Iftrue, loop body executes

3. Loop variable is updated

4. Control returns to condition
Use Cases

e Input validation
e Menu-driven programs
e Repetitive tasks with unknown limit

8. The do-while Loop

The do-while loop executes the loop body at least once, even if the condition is false.

statements;

}

while (condition);

Example

cout << 1 << endl;
i++;
}

while

9. Difference Between while and do-while Loop

while Loop do-while Loop

Condition checked first Condition checked later
May execute zero times Executes at least once
Entry-controlled Exit-controlled

10. Nested Loops



A loop inside another loop is called a nested loop.

Example
for (int 1

{

= 1;
for (int j
{

cout << "x ",

}

cout << endl;

Uses

e Pattern printing
e Matrix operations
e Multi-dimensional data handling

11. Infinite Loops

A loop that never terminates is called an infinite loop.

Example
while (true)

{
cout << "Hello";

}

Reasons

e Missing condition
e Incorrect update of loop variable

Infinite loops must be avoided unless intentionally required.

12. Loop Control Statements

C++ provides loop control statements:

e Dbreak — exits the loop
e continue — skips current iteration

Example

for (int i =

{

if (i == 5)

break;
cout << 1 << endl;




13. Common Errors in Loops

e Missing increment/decrement
e Wrong condition

o Infinite loops

e Off-by-one errors

Proper testing helps avoid these mistakes.

14. Best Practices for Using Loops

Use meaningful loop variables
Avoid deep nesting

Use correct loop type

Write clear conditions
Comment complex loops

15. Applications of Loops

Loops are used in:

Array processing
Searching and sorting
Pattern printing

Games and simulations
Data analysis
Automation programs

16. Advantages of Loops

Reduces code duplication
Improves efficiency
Enhances readability
Simplifies complex problems

17. Conclusion

Flow control with loops is a fundamental concept in C++. Loops allow programs to execute a block of code
repeatedly based on conditions. The for, while, and do-while loops provide flexibility for different



programming needs. A strong understanding of loops is essential for developing efficient, logical, and real-
world C++ programs.



